tictactoe_bot.go
· 4.9 KiB · Go
Raw
package main
import (
"fmt"
"strconv"
"strings"
)
const (
cellEmpty = " "
cellUser = "X"
cellBot = "O"
)
func boardToString(board [3][3]string) string {
rowStrings := make([]string, len(board)+1)
for i, row := range board {
rowStrings[i+1] = strconv.Itoa(i) + " " + strings.Join(row[:], "|")
}
columnIndices := make([]string, 3)
for i := 0; i < 3; i++ {
columnIndices[i] = strconv.Itoa(i)
}
rowStrings[0] = "/ " + strings.Join(columnIndices, " ")
return strings.Join(rowStrings, "\n")
}
func changeCellUserInput(board *[3][3]string) {
var row *[3]string
for {
var rowIndex int
fmt.Print("row: ")
fmt.Scanln(&rowIndex)
if 0 <= rowIndex && rowIndex < len(board) {
row = &board[rowIndex]
break
} else {
fmt.Println("The value needs to be in the range of the board rows.")
continue
}
}
for {
var colIndex int
fmt.Print("col: ")
fmt.Scanln(&colIndex)
if 0 <= colIndex && colIndex < len(row) {
if row[colIndex] != " " {
fmt.Println("This cell is already occupied.")
defer changeCellUserInput(board)
break
}
row[colIndex] = cellUser
break
} else {
fmt.Println("The value needs to be in the range of the board columns.")
continue
}
}
}
func getWinningCombinations(board *[3][3]string) [][3]*string {
// there are 8 winning combinations in total
winningCombinations := make([][3]*string, 8)
// 3 row wins | 3 col wins
for i := 0; i < 3; i++ {
row := [3]*string{}
col := [3]*string{}
for j := 0; j < 3; j++ {
row[j] = &board[i][j]
col[j] = &board[j][i]
}
winningCombinations[i*2] = row
winningCombinations[i*2+1] = col
}
// 2 vertical wins
for i := 0; i < 3; i++ {
winningCombinations[6][i] = &board[i][i]
winningCombinations[7][i] = &board[i][2-i]
}
return winningCombinations
}
type combinationStat struct {
totalCells int
emptyCells int
userCells int
botCells int
emptyCellRefs []*string
}
func calculateCombinationStats(combination [3]*string) combinationStat {
c := combinationStat{}
for _, cell := range combination {
c.totalCells++
switch *cell {
case cellEmpty:
c.emptyCells++
c.emptyCellRefs = append(c.emptyCellRefs, cell)
case cellBot:
c.botCells++
case cellUser:
c.userCells++
}
}
return c
}
func changeCellBotInput(board *[3][3]string, winningCombinations [][3]*string) {
combinationStats := make([]combinationStat, len(winningCombinations))
for i, combination := range winningCombinations {
combinationStats[i] = calculateCombinationStats(combination)
}
// check if bot could win on the next move
for _, c := range combinationStats {
if c.emptyCells == 1 && c.botCells == 2 {
*c.emptyCellRefs[0] = cellBot
return
}
}
// check if user could win on the next move and prevent it
for _, c := range combinationStats {
if c.emptyCells == 1 && c.userCells == 2 {
*c.emptyCellRefs[0] = cellBot
return
}
}
// now count the still possible wins each pointer has
cellScores := make(map[*string]int)
for _, c := range combinationStats {
if c.userCells <= 0 {
score := 1 + (c.totalCells - c.emptyCells)
for _, emptyCell := range c.emptyCellRefs {
cellScores[emptyCell] += score
}
} else {
// initialize empty cells by adding nothing in case there is not further win option
for _, emptyCell := range c.emptyCellRefs {
cellScores[emptyCell] += 0
}
}
}
bestCellScore := 0
var bestCell *string
for cell, cellScore := range cellScores {
if cellScore > bestCellScore {
bestCellScore = cellScore
bestCell = cell
}
}
*bestCell = cellBot
}
type boardData struct {
isWin bool
isPat bool
winningUser string
}
func analyzeWin(winningCombinations [][3]*string) boardData {
b := boardData{}
winnable := false
for _, combination := range winningCombinations {
c := calculateCombinationStats(combination)
if c.botCells == 3 {
b.isWin = true
b.winningUser = cellBot
return b
}
if c.userCells == 3 {
b.isWin = true
b.winningUser = cellUser
return b
}
if c.botCells == 0 || c.userCells == 0 {
winnable = true
}
}
if !winnable {
b.isPat = true
}
return b
}
func main() {
board := [3][3]string{
{cellEmpty, cellEmpty, cellEmpty},
{cellEmpty, cellEmpty, cellEmpty},
{cellEmpty, cellEmpty, cellEmpty},
}
winningCombinations := getWinningCombinations(&board)
currentUser := 0
for {
fmt.Println()
fmt.Println(boardToString(board))
bd := analyzeWin(winningCombinations)
if bd.isWin {
fmt.Println()
switch bd.winningUser {
case cellBot:
fmt.Println("THE BOT WINS!!")
case cellUser:
fmt.Println("CONGRATULATION, YOU WIN!!")
}
break
}
if bd.isPat {
fmt.Println()
fmt.Println("GAME OVER. NEITHER ONE WON")
break
}
if currentUser == 0 {
fmt.Println()
fmt.Println("it's your turn human")
changeCellUserInput(&board, cellUser)
} else {
changeCellBotInput(&board, winningCombinations)
}
currentUser = (currentUser + 1) % 2
}
}
1 | package main |
2 | |
3 | import ( |
4 | "fmt" |
5 | "strconv" |
6 | "strings" |
7 | ) |
8 | |
9 | const ( |
10 | cellEmpty = " " |
11 | cellUser = "X" |
12 | cellBot = "O" |
13 | ) |
14 | |
15 | func boardToString(board [3][3]string) string { |
16 | rowStrings := make([]string, len(board)+1) |
17 | |
18 | for i, row := range board { |
19 | rowStrings[i+1] = strconv.Itoa(i) + " " + strings.Join(row[:], "|") |
20 | } |
21 | |
22 | columnIndices := make([]string, 3) |
23 | for i := 0; i < 3; i++ { |
24 | columnIndices[i] = strconv.Itoa(i) |
25 | } |
26 | rowStrings[0] = "/ " + strings.Join(columnIndices, " ") |
27 | |
28 | return strings.Join(rowStrings, "\n") |
29 | } |
30 | |
31 | func changeCellUserInput(board *[3][3]string) { |
32 | var row *[3]string |
33 | |
34 | for { |
35 | var rowIndex int |
36 | fmt.Print("row: ") |
37 | fmt.Scanln(&rowIndex) |
38 | |
39 | if 0 <= rowIndex && rowIndex < len(board) { |
40 | row = &board[rowIndex] |
41 | break |
42 | } else { |
43 | fmt.Println("The value needs to be in the range of the board rows.") |
44 | continue |
45 | } |
46 | } |
47 | |
48 | for { |
49 | var colIndex int |
50 | fmt.Print("col: ") |
51 | fmt.Scanln(&colIndex) |
52 | |
53 | if 0 <= colIndex && colIndex < len(row) { |
54 | if row[colIndex] != " " { |
55 | fmt.Println("This cell is already occupied.") |
56 | defer changeCellUserInput(board) |
57 | break |
58 | } |
59 | |
60 | row[colIndex] = cellUser |
61 | break |
62 | } else { |
63 | fmt.Println("The value needs to be in the range of the board columns.") |
64 | continue |
65 | } |
66 | } |
67 | } |
68 | |
69 | func getWinningCombinations(board *[3][3]string) [][3]*string { |
70 | // there are 8 winning combinations in total |
71 | winningCombinations := make([][3]*string, 8) |
72 | |
73 | // 3 row wins | 3 col wins |
74 | for i := 0; i < 3; i++ { |
75 | row := [3]*string{} |
76 | col := [3]*string{} |
77 | |
78 | for j := 0; j < 3; j++ { |
79 | row[j] = &board[i][j] |
80 | col[j] = &board[j][i] |
81 | } |
82 | |
83 | winningCombinations[i*2] = row |
84 | winningCombinations[i*2+1] = col |
85 | } |
86 | |
87 | // 2 vertical wins |
88 | for i := 0; i < 3; i++ { |
89 | winningCombinations[6][i] = &board[i][i] |
90 | winningCombinations[7][i] = &board[i][2-i] |
91 | } |
92 | |
93 | return winningCombinations |
94 | } |
95 | |
96 | type combinationStat struct { |
97 | totalCells int |
98 | emptyCells int |
99 | userCells int |
100 | botCells int |
101 | |
102 | emptyCellRefs []*string |
103 | } |
104 | |
105 | func calculateCombinationStats(combination [3]*string) combinationStat { |
106 | c := combinationStat{} |
107 | |
108 | for _, cell := range combination { |
109 | c.totalCells++ |
110 | switch *cell { |
111 | case cellEmpty: |
112 | c.emptyCells++ |
113 | c.emptyCellRefs = append(c.emptyCellRefs, cell) |
114 | case cellBot: |
115 | c.botCells++ |
116 | case cellUser: |
117 | c.userCells++ |
118 | } |
119 | } |
120 | |
121 | return c |
122 | } |
123 | |
124 | func changeCellBotInput(board *[3][3]string, winningCombinations [][3]*string) { |
125 | combinationStats := make([]combinationStat, len(winningCombinations)) |
126 | for i, combination := range winningCombinations { |
127 | combinationStats[i] = calculateCombinationStats(combination) |
128 | } |
129 | |
130 | // check if bot could win on the next move |
131 | for _, c := range combinationStats { |
132 | if c.emptyCells == 1 && c.botCells == 2 { |
133 | *c.emptyCellRefs[0] = cellBot |
134 | return |
135 | } |
136 | } |
137 | |
138 | // check if user could win on the next move and prevent it |
139 | for _, c := range combinationStats { |
140 | if c.emptyCells == 1 && c.userCells == 2 { |
141 | *c.emptyCellRefs[0] = cellBot |
142 | return |
143 | } |
144 | } |
145 | |
146 | // now count the still possible wins each pointer has |
147 | cellScores := make(map[*string]int) |
148 | for _, c := range combinationStats { |
149 | if c.userCells <= 0 { |
150 | score := 1 + (c.totalCells - c.emptyCells) |
151 | for _, emptyCell := range c.emptyCellRefs { |
152 | cellScores[emptyCell] += score |
153 | } |
154 | } else { |
155 | // initialize empty cells by adding nothing in case there is not further win option |
156 | for _, emptyCell := range c.emptyCellRefs { |
157 | cellScores[emptyCell] += 0 |
158 | } |
159 | } |
160 | } |
161 | |
162 | bestCellScore := 0 |
163 | var bestCell *string |
164 | for cell, cellScore := range cellScores { |
165 | if cellScore > bestCellScore { |
166 | bestCellScore = cellScore |
167 | bestCell = cell |
168 | } |
169 | } |
170 | |
171 | *bestCell = cellBot |
172 | } |
173 | |
174 | type boardData struct { |
175 | isWin bool |
176 | isPat bool |
177 | |
178 | winningUser string |
179 | } |
180 | |
181 | func analyzeWin(winningCombinations [][3]*string) boardData { |
182 | b := boardData{} |
183 | |
184 | winnable := false |
185 | for _, combination := range winningCombinations { |
186 | c := calculateCombinationStats(combination) |
187 | |
188 | if c.botCells == 3 { |
189 | b.isWin = true |
190 | b.winningUser = cellBot |
191 | return b |
192 | } |
193 | if c.userCells == 3 { |
194 | b.isWin = true |
195 | b.winningUser = cellUser |
196 | return b |
197 | } |
198 | |
199 | if c.botCells == 0 || c.userCells == 0 { |
200 | winnable = true |
201 | } |
202 | } |
203 | |
204 | if !winnable { |
205 | b.isPat = true |
206 | } |
207 | |
208 | return b |
209 | } |
210 | |
211 | func main() { |
212 | board := [3][3]string{ |
213 | {cellEmpty, cellEmpty, cellEmpty}, |
214 | {cellEmpty, cellEmpty, cellEmpty}, |
215 | {cellEmpty, cellEmpty, cellEmpty}, |
216 | } |
217 | winningCombinations := getWinningCombinations(&board) |
218 | |
219 | currentUser := 0 |
220 | for { |
221 | fmt.Println() |
222 | fmt.Println(boardToString(board)) |
223 | |
224 | bd := analyzeWin(winningCombinations) |
225 | if bd.isWin { |
226 | fmt.Println() |
227 | switch bd.winningUser { |
228 | case cellBot: |
229 | fmt.Println("THE BOT WINS!!") |
230 | case cellUser: |
231 | fmt.Println("CONGRATULATION, YOU WIN!!") |
232 | } |
233 | break |
234 | } |
235 | if bd.isPat { |
236 | fmt.Println() |
237 | fmt.Println("GAME OVER. NEITHER ONE WON") |
238 | break |
239 | } |
240 | |
241 | if currentUser == 0 { |
242 | fmt.Println() |
243 | fmt.Println("it's your turn human") |
244 | changeCellUserInput(&board, cellUser) |
245 | } else { |
246 | changeCellBotInput(&board, winningCombinations) |
247 | } |
248 | |
249 | currentUser = (currentUser + 1) % 2 |
250 | } |
251 | } |
252 |